Fabrication of morphology and crystal structure controlled nanorod and nanosheet cobalt hydroxide based on the difference of oxygen-solubility between water and methanol, and conversion into Co3O4
نویسندگان
چکیده
Films of brucite-type cobalt hydroxide with nanorod morphology and hydrotalcite-type cobalt hydroxide with nanosheet morphology films were fabricated by heterogeneous nucleation in a chemical bath using water and a mixed solution of water–methanol as solvents, respectively. Since oxygen is around 25 times more soluble in methanol than in water, a methanol solution was used to convert a part of divalent cobalt ions into trivalent cobalt ions through oxidation, due to the amount of dissolved oxygen. The resultant cobalt hydroxides were of the hydrotalcite type, with a sheet-like morphology, and diand trivalent cobalt ions. On the other hand, brucite-type hydroxides with a rod morphology, constructed using only divalent cobalt ions, were fabricated due to the scarcity of dissolved oxygen in a water-only solvents. Both the brucite and hydrotalcite types of cobalt hydroxide films were transformed into Co3O4 through pyrolysis without nanostructural deformation. The Co3O4 films were porous structures with a large surface area because both rod and sheet were constructed through nanoparticles and nanopores once the self-template was removed.
منابع مشابه
Imidazolium-based Ionic liquids on Morphology and Optical Properties of ZnO Nanostructures
ZnO nanostructures have been synthesized by a simple reflux method, using different ionic liquids, such as 1-benzyl-3-methylimidazolium bromide ([BzMIM][Br]), 1,1'-(1,4 phenylenebis (methylene)) bis (3-methyl-1H-imidazol-3-ium) bromide ([MM-1,4-DBzIM2][Br]2) and 1-phenacyl-3-methylimidazolium bromide ([PMIM][Br]), with different amount of sodium hydroxide in water. Als...
متن کاملCharacterization of Cobalt Oxide Co3O4 Nanoparticles Prepared by Various Methods: Effect of Calcination Temperatures on Size, Dimension and Catalytic Decomposition of Hydrogen Peroxide
In this scientific research work we report a novel method to synthesis Co3O4 nanoparticles via calcinations of cobalt hydroxide which can be conveniently prepared by the Co(NO3 )2.6H2O with different reactants. In order to study the effect of calcination temperature on structure and morphology of the nanoparticles, the calcinations take place at various temperatures (at 300°C, 500°C and 700°C)....
متن کاملCobalt(II) macrocycle complexes based synthesis of Co3O4 nanoparticles: structural and spectral characterization
In this paper, macrocyclic cobalt(II) complexes [CoL1](NO3)2.4H2O (1) and [CoL2](NO3)2.2H2O (2) have been synthesized from the reaction of dialdehydes 1,2-bis(2-formylphenyl)ethane and 1,3-bis(2-formylphenyl)propane, Co(NO3)2.6H2O and 1,2-cyclohexanediamine with molar ration 1:1:1 in methanole and characterized by elemental analyses and FT-IR spectroscopy. Then used as precursors for preparatio...
متن کاملCobalt(II) macrocycle complexes based synthesis of Co3O4 nanoparticles: structural and spectral characterization
In this paper, macrocyclic cobalt(II) complexes [CoL1](NO3)2.4H2O (1) and [CoL2](NO3)2.2H2O (2) have been synthesized from the reaction of dialdehydes 1,2-bis(2-formylphenyl)ethane and 1,3-bis(2-formylphenyl)propane, Co(NO3)2.6H2O and 1,2-cyclohexanediamine with molar ration 1:1:1 in methanole and characterized by elemental analyses and FT-IR spectroscopy. Then used as precursors for preparatio...
متن کاملFabrication and Characterization of Nanoporous Co Oxide (Co3O4) Prepared by Simple Sol-gel Synthesis
Cobalt oxide (Co3O4) nanorods were prepared by a simple co-precipitation method using ethanol solution of cobalt nitrate as precursor and cetyl trimethylammonium bromide (CTAB) as surfactant. Morphological properties of the nanoparticles were characterized. XRD measurement exhibited the structure of Co3O4 nanocrystals for annealed samples. The SEM ima...
متن کامل